
Introduction to Linear Categorial Grammar

(LCG)

Carl Pollard

November 18, 2014

Linear Categorial Grammar (LCG)

LCG is a practical framework for linguistic analysis influenced
by three traditions in linguistic theory:

• categorial grammar (CG), a kind of syntactic analysis founded
by Joachim Lambek (1958) that treats grammar rules as infer-
ence rules of a proof theory.

• Montague semantics (MS), a higher-order theory of sen-
tence meaning founded by Richard Montague (late 1960s), in-
fluenced by Frege, Carnap, and Kripke.

• dynamic semantics, theories of discourse meaning proposed
by Lauri Karttunen, Hans Kamp, Irene Heim, and others (1970s-
1980s), influenced by Hamblin, Lewis, and Stalnaker, empha-
sizing the interaction between utterance context and utterance
meaning.

Sources of LCG

LCG builds on recent developments in all three of these tradi-
tions:

• curryesque CG, which analyzes syntax using linear logic
(LL). Inspired by programmatic ideas of Curry (1961) and tech-
nical innovations of Oehrle (1994).

1

• agnostic hyperintensional semantics (AHS). a higher-
order semantic theory which is weaker than MS and makes
finer meaning distinctions (already discussed).

• the line of work in dynamic semantics based on mainstream
type theory/HOL established by Muskens (1996), Beaver (2001),
de Groote (2006), and others.

For now, we focus in the first of these.

Pheno, Tecto, and Semantics

In a 1948 lecture, published in expanded form in 1961,
Curry proposed that a linguistic expression should be
analyzed as consisting of:

1. a phenogrammatical component: specifies the ex-
pression’s surface form

2. a tectogrammatical component: specifies the the
expression’s combinatory potential

3. a semantic component: specifies the expression’s
meaning

The Phenogrammatical Component

• Usually abbreviated to just pheno

• Corresponds roughly to what linguists call phonol-
ogy, broadly construed to include word order and
intonation.

• relates to what the expression sounds like (or in the
case of sign language, looks like)

2

The Tectogrammatical Component

• Usually abbreviated to just tecto.

• Corresponds roughly to what linguists call syntac-
tic category.

• Relates to what other expressions the expression can
combine with, and what results from the combina-
tion.

Syntactic Analyses as Proofs (1/2)

• In 1958, Lambek invented his syntactic calculus,
later called Lambek calculus.

• A Lambek calculus is a grammar written in the form
of a logical proof system.

• This is also true of other kinds of CG, including LCG;
the main difference is that the underlying logic is
different (linear logic for LCG, vs. bilinear logic for
the Lambek calculus).

Syntactic Analyses as Proofs (2/2)

• The role of linguist’s trees is taken over by proof
trees.

• Words correspond to axioms.

• Grammar rules are replaced by inference rules.

3

• Linguistic expressions correspond to theorems of
the proof system.

• Analyses of linguistic expressions correspond to proofs
of the corresponding theorems.

Montague Grammar (1/3)

• A Montague grammar (MG) recursively defines a set
of triples, each consisting of a word string, a syn-
tactic type, and a HOL term denoting a meaning.

• In retrospect, we can relate Montague’s string to
Curry’s pheno, and Montague’s syntactic type to
Curry’s tecto.

• Some of the triples (lexical entries) are given at
the outset, while the rules of the grammar produce
new triples from old ones.

Montague Grammar (2/3)

• Each MG rule includes ‘recipes’ specifying how to
construct the string and meaning of a new expres-
sion, respectively, from the strings and meanings of
the expression’s immediate constituents.

• On the semantic side, this last point is a version of
Frege’s notion of semantic compositionality.

• The operation involved in constructing the new ex-
pression’s string is usually concatenation.

4

Montague Grammar (3/3)

• In MG, the operation involved in constructing the
new expression’s meaning is usually function appli-
cation.

• Compared with Lambek calculus (or LCG), MG was
impoverished, lacking any rule corresponding to Hy-
pothetical Proof.

• In the 1980s van Benthem pointed out that Lam-
bek calculus could be interfaced with Montague se-
mantics by having Hypothetical Proof correspond to
lambda abstraction in the semantics.

Oehrle

Oehrle (1994) introduced three technical innovations
in categorial grammar.

1. Replace the Lambek calculus with a simpler logic,
namely linear logic (LL).

2. Allow phenos to be not just strings, but also (possi-
bly higher-order) functions over strings.

3. Use type raising and function application in the pheno
component to get the effect of Montague’s ‘quantify-
ing in’. (We will extend this technique to deal with
various kinds of focus constructions, ‘wh-movement’,
etc.)

5

LCG Overview

• An LCG for a natural language is a proof system that recur-
sively defines a set of ordered triples called signs, each of which
is taken to represent an expression of the language.

• Signs are notated in the form

a : A;B; c : C

where

– a : A, the pheno, is a typed term of the pheno theory.

– B, the tecto, is a formula of LL.

– c : C, the semantics, is a typed term of (static) AHS.
(Later, we’ll switch to dynamic AHS.)

Note: pheno and semantic types are omitted when they can be
inferred from the term.

LCG Architecture

An LCG consists of:

• Two kinds of axioms:

– logical axioms, also called traces

– nonlogical axioms, also called lexical entries

• Two logical rule schemas:

– Modus Ponens, also called (-Elimination

– Hypothetical Proof, also called (-Introduction

• A few nonlogical rules will be added later.

Before considering the precise form of the axioms and
rules, we need to discuss the form of LCG sequents.

6

LCG Sequents (1/2)

• A sign is called hypothetical provided its pheno
and semantics are both variables.

• An LCG sequent is an ordered pair 〈Γ, A〉 where Γ,
the context, is a set of hypothetical signs; and A,
the statement, is a sign.

• The hypothetical signs in Γ are called the hypothe-
ses of the sequent.

• Any two hypotheses in a context must have distinct
pheno variables and distinct semantic variables.

LCG Sequents (2/2)

• The grammar, made up of axioms and rules, recursively defines
a set of sequents.

• The notation

Γ ` A

asserts that the sequent 〈Γ, A〉 belongs to the set of sequents
defined by the grammar.

• And so the turnstile symbol ‘`’ denotes a relation between
contexts and signs.

• When Γ is empty, we write ‘` A’ rather than ‘∅ ` A’.

• If ` A, we say that the sign A is generated by the grammar.

7

The Trace Axiom Schema

Full form:

p : P ;A; z : B ` p : P ;A; z : B

Short form (when types of variables are known):

p;A; z ` p;A; z

Note: Soon we’ll see that these axioms play a role anal-
ogous to that of traces in mainstream generative gram-
mar.

Two Lexical Entries to Get Started

` it; It; ∗ (dummy pronoun it)

` λs .s · rained; It (S;λo.rain : T→ p

Here the unit type T denotes a singleton set, whose
only member, denoted by ∗, is used for vacuous meanings
(following Carpenter 1997).

We treat dummy ‘pronoun’ it as belonging to its own
syntactic category It.

The Two LCG Rule Schemas (Full Form)

• Modus Ponens

Γ ` f : A→ D;B (E; g : C → F ∆ ` a : A;B; c : C

Γ,∆ ` f a : D;E; g c : F

• Hypothetical Proof

Γ, p : P ;A; z : B ` a : C;D; b : E

Γ ` λp .a : P → C;A(D;λz .b : B → E

8

The Two LCG Rule Schemas (Short Form)

These are used when the types of the terms are known.

• Modus Ponens

Γ ` f ;B (E; g ∆ ` a;B; c

Γ,∆ ` f a;E; g c

This is LCG’s counterpart of Merge in mainstream generative
grammar. It corresponds to function application in pheno and
semantics.

• Hypothetical Proof

Γ, p;A; z ` a;D; b

Γ ` λp .a;A(D;λz .b

This is LCG’s counterpart of Move in mainstream generative
grammar. It corresponds to lambda abstraction in pheno and
semantics.

An LCG Analysis

With the terms unsimplified:

` λs .s · rained; It (S;λo.rain ` it; It; ∗
` (λs .s · rained) it; S; (λo.rain) ∗

With the terms simplified:

` λs .s · rained; It (S;λo.rain ` it; It; ∗
` it · rained; S; rain

Note: Without comment, we use provable equalities (usually,
rule (β)) of the pheno and semantic theories to simplify terms in
intermediate conclusions before using them as premisses for later
rule instances.

9

More Lexical Entries

` pedro; NP; p

` chiqita; NP; c

` maria; NP;m

` λs .s · brayed; NP (S; bray

` λst .s · beat · t; NP (NP (S; beat

` λstu .s · gave · t · u; NP (NP (NP (S; give

` λst .s · believed · t; NP (S̄ (S; believe

` λstu .s · persuaded · t · u; NP (NP (S̄ (S; persuade

Note: The finite verb entries are written to combine the verb
first with the subject, then with the complements (the reverse of
how things are traditionally done!)

Still More Lexical Entries

` donkey; N; donkey

` farmer; N; farmer

` λs .that · s; S (S̄;λp .p (complementizer that)

` λfs .s · that · (f e); (NP (S) (N (N; that
(relativizer that)

` λsf .f (every · s); N (QP; every

` λsf .f (some · s); N (QP; some

Note: ‘QP’ (for ‘quantified NP’) abbreviates (NP (S) (S.

The motivation for giving these expressions a ‘raised’ tecto type
is semantic and will be explained in due course.

Another LCG Analysis

` λs .s · brayed; NP (S; bray ` chiqita; NP; c
` chiqita · brayed; S; bray c

10

Yet Another LCG Analysis

` λst .s · beat · t; NP (NP (S; beat ` pedro; NP; p

λt .pedro · beat · t; NP (S; beat p ` chiqita; NP; c

pedro · beat · chiquita; S; beat p c

Sorry, had to shrink this to scriptsize to fit it on the slide!

The Same Analysis with Semantics Omitted
Alternatively, if we don’t care about semantics, we can sometimes overcome

the space problem by omitting the semantic components of the signs:

` λst .s · beat · t; NP (NP (S ` pedro; NP

λt .pedro · beat · t; NP (S ` chiqita; NP

pedro · beat · chiquita; S

This approach has its limits.

An Oversized LCG Analysis
I shrunk this one to tiny and it still won’t fit!

` λst .s · believed · t; NP (S̄ (S ` pedro; NP

` λt .pedro · believed · t; S̄ (S

` λs .that · s; S (S̄

` λs .s · brayed; NP (S ` chiqita; NP

` chiquita · brayed; S

` that · chiquita · brayed; S̄

` pedro · believed · that · chiquita · brayed; S

Another Solution to the Space Problem
[1]:

` λst .s · believed · t; NP (S̄ (S; believe ` pedro; NP; p

` λt .pedro · believed · t; S̄ (S; believe p

[2]:

` λs .that · s; S (S̄;λp .p

` λs .s · brayed; NP (S; bray ` chiqita; NP; c

` chiquita · brayed; S; bray c

` that · chiquita · brayed; S̄; bray c

[1] [2]

` pedro · believed · that · chiquita · brayed; S; believe p (bray c)

11

Quantified Noun Phrases (QPs)
[1]:

` λsf .f (some · s); N (QP; some ` farmer; N; farmer

` λf .f (some · farmer); QP; some farmer

[2]:

` λsf .f (every · s); N (QP; every ` donkey; N; donkey

` λf .f (every · donkey); QP; every donkey

This analysis of QPs is due to Oehrle (1994).

Note that the phenos are not strings, but rather have the raised type (s →
s)→ s.

These are used to get the effect of Montague’s ‘quantifying-in’.

Quantifying In

[2] ` λs .s · brayed; NP (S; bray
` every · donkey · brayed; S; every donkey bray

Quantifier Scope Ambiguity (1/2)
To get the ‘surface scope’ reading, we start by introducing a trace into the

subject position:

[3]:

` λst .s · beat · t; NP (NP (S; beat s; NP;x ` s; NP;x

s; NP;x ` λt .s · beat · t; NP (S; beat x

Then we quantify in the object QP; bind the subject trace; and finally
quantify in the subject QP:

[1]

[2] [3]

s; NP; x ` s · beat · every · donkey; NP (S; every donkey (beat x)

` λs .s · beat · every · donkey; NP (S;λx .every donkey (beat x)

` some · farmer · beat · every · donkey; S; some farmer (λx .every donkey (beat x))

Quantifier Scope Ambiguity (2/2)
To get the ‘crossed scope’ reading, we start as before, introducing a trace

into the subject position:

[3]:

` λst .s · beat · t; NP (NP (S; beat s; NP;x ` s; NP;x

s; NP;x ` λt .s · beat · t; NP (S; beat x

12

But then, we introduce a second trace in the object position; bind the subject
trace and quantify in the subject QP; and finally, bind the object trace and
quantify in the object QP:

[2]

[1]

[3] t; NP; y ` t; NP; y

t; NP; y, s; NP; x ` s · beat · t; S; beat x y

t; NP; y ` λs .s · beat · t; NP (S;λx .beat x y

t; NP; y ` some · farmer · beat · t; S; some farmer (λx .beat x y)

` λt .some · farmer · beat · t; NP (S;λy .some farmer (λx .beat x y)

` some · farmer · beat · every · donkey; S; every donkey (λy .some farmer (λx .beat x y))

13

