Raising in LCG

Carl Pollard

December 4, 2014

Starting to Get Real: English 'NPs'

- To get started, we assumed tectos NP (for names) and It (for dummy $i t$), but this is too simple.
- Even if we consider only third person singular noun phrases, we still must account for these facts:
- Names and NPs formed by combining a determiner with a common noun occur both as subject and as object of verb or preposition.
- The same is true of the dummy pronoun.
- But, except for nonhuman $i t$, definite pronouns have different forms, of which some (he, she) can't be objects and others (her, him) can't be subjects.
- Only a few verbs, e.g. be, seem, and weather verbs, allow dummy subjects.
- And only a few verbs, e.g. believe (as in believe it to be raining allow dummy objects.

Are Features Necessary?

- In most syntactic frameworks (CCG, HPSG, LFG, MP) problems of this kind are addressed through the use of features.
- For example, in HPSG, NPs specify values for the features CASE and NFORM.
- But in a framework based on proof theory, it's unclear what 'features' would be: formulas aren't usually thought of as having 'features'.
- We'll use a different approach due to Lambek (1999) in the context of his framework called pregroup grammar.
- Pregroup grammar is based on bilinear logic, but this idea works just as well with linear logic.

Ordering the Basic Tectos (1/2)

- Lambek proposed ordering the basic syntactic types.
- The basic intuition is that if $A \leq B$, then any sign with tecto A can also be considered as a sign with tecto B.
- In this case we say A is a (tecto) subtype of B.
- For example: we would like to say that the tecto of 'NPs' which can serve as both subjects and objects (which we will call Neu, for 'neutral') is a subtype of the tecto of 'NPs' that can serve as subjects (which we will call Nom, for 'nominative'):

$$
\mathrm{Neu} \leq \mathrm{Nom}
$$

Ordering the Basic Tectos (2/2)

- In the grammar, we directly assert certain inequalities, such as Neu \leq Nom, and then define \leq to be the smallest order on basic tectos that includes all the asserted inequalities.
- Then we revise the Trace axiom schema to the following more general form (the original schema corresponds to the case $B=B^{\prime}$):

Trace Axiom Schema (Generalized):

$$
x ; B ; z \vdash x ; B^{\prime} ; z\left(\text { for } B \leq B^{\prime}\right)
$$

Three Derived Rule Schemas

These schemas (schematized over $B \leq B^{\prime}$) are useful for shortening LCG proofs. (Their derivations are left as exercises.)

- Derived Rule Schema 1

$$
\frac{\Gamma \vdash a ; B ; c}{\Gamma \vdash a ; B^{\prime} ; c} \mathrm{D} 1
$$

- Derived Rule Schema 2

$$
\frac{\Gamma \vdash f ; B^{\prime} \multimap A ; g}{\Gamma \vdash f ; B \multimap A ; g} \mathrm{D} 2
$$

- Derived Rule Schema 3

$$
\frac{\Gamma \vdash f ; A \multimap B ; g}{\Gamma \vdash f ; A \multimap B^{\prime} ; g} \mathrm{D} 3
$$

Ordering Basic Tectos to Analyze English Case

- For now we only consider sentences with finite verbs.
- Later we'll elaborate our approach to handle issues about 'unrealized' subjects of nonfinite verb forms (base forms, infinitives, and participles) and of nonverbal predicative expressions.
- First we discard the tecto NP and replace it with:
- Nom ('NPs' that can be subjects of finite verbs)
- Acc ('NPs' that can be objects of verbs or prepositions)
- Neu ('NPs' that can be either)
- Next, we assert the inequalities

$$
\mathrm{Neu} \leq \mathrm{Nom}, \mathrm{Neu} \leq \mathrm{Acc}
$$

Lexicon Revised and Expanded to Analyze Case

(Semantics omitted from now on, until we need it)
\vdash pedro; Neu
\vdash chiqita; Neu
\vdash maria; Neu
\vdash she; Nom
\vdash he; Nom
\vdash him; Acc
\vdash her; Acc
$\vdash \lambda_{s} . s \cdot$ brayed; Nom $\multimap \mathrm{S}$
$\vdash \lambda_{s t} \cdot s \cdot$ believed $\cdot t ;$ Nom $\multimap \overline{\mathrm{S}} \multimap \mathrm{S}$
$\vdash \lambda_{s t} \cdot s \cdot$ beat $\cdot t ;$ Nom \multimap Acc $\multimap \mathrm{S}$
$\vdash \lambda_{s t u} \cdot s \cdot$ gave $\cdot t \cdot u ;$ Nom \multimap Acc \multimap Acc $\multimap \mathrm{S}$

How Neutral 'NPs' Get Case

This derivation uses Derived Rule Schema 1 twice:

$$
\frac{\vdash \lambda_{s t} . s \cdot \text { beat } \cdot t ; \text { Nom } \multimap \text { Acc } \multimap \mathrm{S}}{\vdash \frac{\vdash \text { pedro; Neu }}{\vdash \text { pedro; Nom }}} \frac{\vdash \text {.pedro } \cdot \text { beat } \cdot t ; \text { Acc } \multimap \mathrm{S}}{\vdash \text { pedro } \cdot \text { beat } \cdot \text { chiquita; } \mathrm{S}}
$$

Predicative Adjectives

- As a first approximation, we analyze predicative adjectives with a new basic tectotype PrdA:
\vdash lazy; PrdA
\vdash asleep; PrdA
- We can't do anything with these yet, but we are about to fix that.

Introducing the Copula Be

- As a first approximation, be takes a noun phrase subject, which for finite forms of be must be nominative, and a predicative adjective complement (actually, there other kinds of predicatives besides adjectives are possible, which we ignore for now):
$\vdash \lambda_{s t} \cdot s \cdot$ is $\cdot t ; \operatorname{Nom} \multimap \operatorname{PrdA} \multimap \mathrm{S}$
- Problem: Some PrdAs demand a dummy it subject, while most require a 'normal', nondummy, subject:

1. Chiquita/He/She is lazy/asleep.
2. * Chiquita/He/She is rainy.
3. It is rainy.
4. * It is lazy/asleep. (where it is not referential)

How does the copula know what kind of subject its complement expects?

Predicative Adjectives 'Care' about their Subjects

- Although a predicative adjective cannot directly take a subject, if a copula takes it as a complement, it 'tells' the copula what kind of subject to take.
- We analyze this by treating predicative adjectives tectogrammatically (and semantically) as functors, but phenogrammatically as just strings:
\vdash rainy; It $\multimap \operatorname{PrdA}$
\vdash obvious : $\overline{\mathrm{S}} \multimap \operatorname{PrdA}$
\vdash lazy : Nom $\multimap \operatorname{PrdA}$
The 'Nom' in the last entry is not quite right, but it will take some development to see why.
- We will analyze nonfinite verb phrases (infinitivals, base-form verb phrases, and participial phrases) the same way, but with PrdA replaced by other basic tectos (Inf, Bse, Prp, Psp, and Pas).

Be, Take Two

- Now, we replace our old lexical entry for is:
$\vdash \lambda_{s t} \cdot s \cdot$ is $\cdot t ; \mathrm{Nom} \multimap \operatorname{PrdA} \multimap \mathrm{S}$
with the following schema:
$\vdash \lambda_{s t} \cdot s \cdot$ is $\cdot t ; A \multimap(A \multimap \operatorname{PrdA}) \multimap \mathrm{S}$
where A is a metavariable ranging over tectos.
- This analysis corresponds to what is called raising to subject (RTS) in other frameworks.
- In essence, is says: 'I don't care what my subject is, as long as my complement is happy with it'.
- We use the same trick to analyze other verbs (and nonverbal predicatives) traditionally analyzed in terms of RTS (e.g. modals and other auxiliaries, seem, tend).

Problems with Raising (1/2)

- Another problem: some verbs, traditionally called raising to object (RTO) verbs, feel the same way about their object as RTS verbs feel about their subject, for example considers:

1. Pedro considers it rainy.
2. Pedro considers that Chiquita brays obvious.
3. Pedro considers Chiquita/her/*she lazy.

- For such verbs, if the object is a pronoun, it has to be accusative.

Problems with Raising (2/2)

So if we try to analyze RTO on a par with RTS, with a lexical entry like:
$\vdash \lambda_{s t u} \cdot s \cdot$ considers $\cdot t \cdot u$; Nom $\multimap A \multimap(A \multimap \operatorname{PrdA}) \multimap \mathrm{S}$
it will interact badly with the lexical entry
\vdash lazy : Nom $\multimap \operatorname{PrdA}$
to overgenerate things like

* Pedro considers she lazy.
while failing to generate the correct
Pedro considers her lazy.

Fixing the Undergeneration Problem with Raising (1/2)

- The undergeneration problem arises with RTO because the lexical entries for predicative adjectives like lazy demand nominative subjects.
- This works when the 'unrealized' subject is 'raised' to the subject of a finite verb (such as $i s$), but not when it is 'raised' to object, where an accusative is needed.
- We could add a second entry with tecto Acc $\multimap \operatorname{PrdA}$.
- But we can avoid doubling up all these lexical entries if instead we replace all the Nom $\multimap \operatorname{PrdA}$ entries with entries with tecto PRO $\multimap \operatorname{PrdA}$, where PRO is a new basic tecto ordered as follows:

$$
\mathrm{Nom} \leq \mathrm{PRO}, \mathrm{Acc} \leq \mathrm{PRO}
$$

Fixing the Undergeneration Problem with Raising (2/2)

- Then in the lexicon we need only list
\vdash lazy; PRO $\multimap \operatorname{PrdA}$
- From this we can derive the signs needed as complements to is and considers, respectively, by Derived Rule Schema 2:
\vdash lazy; Nom $\multimap \operatorname{PrdA}$
\vdash lazy; Acc \multimap PrdA
- While Neu is overspecified between Nom and Acc, PRO is underspecified between Nom and Acc.
- Cf. GB theory's PRO, which is supposed to occur in non-caseassigned positions such as subject of infinitive.
- But unlike GB, our predicatives (and nonfinite VPs) don't actually take subjects, because phenogrammatically they are not functions.

Fixing the Overgeneration Problem with Raising (1/2)

- As it stands, our analysis still overgenerates:

1. * Pedro considers she lazy.
2. * Her is lazy.
because the A s in the lexical schemas for is and considers can be instantiated (inter alia) as Nom or Acc.

- Our is doesn't care what its subject is as long as its complement likes it, and our considers doesn't care what its object is as long as its complement likes it.
- But is should insist that if its subject is a (nondummy) NP, then it must be nominative.
- And considers should insist that if its object is a (nondummy) NP, then it must be accusative.

Fixing the Overgeneration Problem with Raising (2/2)

- We solve these problems by limiting the possible instantiations of the type variable A in the lexical entries, in different ways.
- We add two new basic tectotypes NOM and ACC.
- NOMs are things that can be subjects of finite RTS verbs.
- ACCs are things that can be objects of RTO verbs.
- Next we add more tecto inequalities:

$$
\mathrm{Nom} \leq \mathrm{NOM}, \mathrm{It} \leq \mathrm{NOM}, \mathrm{Acc} \leq \mathrm{ACC}, \mathrm{It} \leq \mathrm{ACC}
$$

- And finally, we revise the lexical schemas for is and considers as follows:
$\vdash \lambda_{s t} \cdot s \cdot$ is $\cdot t ; A \multimap(A \multimap \operatorname{PrdA}) \multimap \mathrm{S}(A \leq \mathrm{NOM})$
$\vdash \lambda_{s t u} \cdot s \cdot$ considers $\cdot t \cdot u ; \operatorname{Nom} \multimap A \multimap(A \multimap \operatorname{PrdA}) \multimap \mathrm{S}(A \leq \mathrm{ACC})$

Subjects of Nonfinite Verbs (1/3)

- As we've seen, the tecto requirement for subjects of predicatives and nonfinite verbs whose finite counterpart would require a Nom is PRO.
- And the tecto requirement for subjects of finite RTS verbs is NOM.
- But what is the type requirement for the subject of a nonfinite RTS verb, such as be or to? It is less constrained than objects of RTO verbs or subjects of finite RTS verbs, because no case requirement is imposed on it.
- We handle this by positing a new tecto, called NP (because it plays a role analogous to that of NP-trace in GB theory), of which NOM, PRO, and ACC are subtypes:

$$
\mathrm{NOM} \leq \mathrm{NP}, \mathrm{PRO} \leq \mathrm{NP}, \mathrm{ACC} \leq \mathrm{NP}
$$

Subjects of Nonfinite Verbs (2/3)

- Finally, we write lexical entries schematized over values of A which are subtypes of NP:
$\vdash \lambda_{s}$.be $\cdot s ;(A \multimap \operatorname{PrdA}) \multimap A \multimap$ Bse $(A \leq \mathrm{NP})$
$\vdash \lambda_{s}$.to $\cdot s ;(A \multimap \mathrm{Bse}) \multimap A \multimap \operatorname{Inf}(A \leq \mathrm{NP})$
- In the preceding lexical entries, the tectos are written with the complements as the intial arguments and the subject (which cannot be taken directly as an argument) last.
- This same practice is followed for all nonfinite verbs (and complementtaking nonverbal predicatives). Compare:
$\vdash \lambda_{s t} \cdot s \cdot$ beats $\cdot t ;$ Nom $\multimap \mathrm{Acc} \multimap \mathrm{S}$
$\vdash \lambda_{s}$. beat $\cdot s$; Acc $\multimap \mathrm{PRO} \multimap$ Bse

Subjects of Nonfinite Verbs (3/3)

- Although verbs (other than to) don't have infinitive forms, roughly that effect results from syntactic combination:

$$
\frac{\frac{\lambda_{s} \cdot \mathrm{to} \cdot s ;(A \multimap \mathrm{Bse}) \multimap A \multimap \operatorname{Inf}}{\lambda_{s} . \text { to } \cdot s ;(\mathrm{PRO} \multimap \mathrm{Bse}) \multimap \mathrm{PRO} \multimap \operatorname{Inf}} \quad \vdash \text { bray } ; \mathrm{PRO} \multimap \mathrm{Bse}}{\vdash \text { to } \cdot \text { bray } ; \mathrm{PRO} \multimap \mathrm{Inf}}
$$

Here for expository purposes we pretend that instantiation of a schema is a unary rule (of course it isn't really.)

